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Abstract

The problems of anisotropic plates containing holes, cracks and/or inclusions have been studied extensively for two-
dimensional deformations. Although the correspondence between the two-dimensional problems and the plate bending
problems has been observed long time ago, without clarifying the involved mathematical details one still cannot get the
solutions of the plate bending problems directly from the solutions of the corresponding two-dimensional problems.
Based upon the correspondence relation, recently we developed a Stroh-like formalism for the bending theory of an-
isotropic plates. By this newly developed formalism, most of the relations for bending problems can be organized into
the forms for two-dimensional problems. Thus, by using the Stroh-like formalism, the analytical solutions for problems
of anisotropic plates with holes/cracks/inclusions subjected to out-of-plane bending moments can be obtained directly
from the solutions of the corresponding two-dimensional problems. The stresses (or resultant bending moments)
around the hole/crack/inclusion boundaries are also given explicitly in this paper. Since the explicit closed-form so-
lutions for the present cases have not been found in the literature, comparison is made with some special cases of which
the analytical solutions exist, which shows that our solutions are exact, simple and general.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the hole/crack/inclusion problems are very important in engineering applications, most of the
analytical solutions found in the literature are for two-dimensional problems. As far as the authors’
knowledge, the only related analytical solutions found in the literature for the bending problems are ob-
tained by Lekhnitskii (1938) and Lu and Mahrenholtz (1994). The former was obtained for the orthotropic
plates weakened by a circular hole or inclusion, which was derived nearly 63 years ago using Lekhnitskii’s
complex variable method (Lekhnitskii, 1968). The latter was obtained for the general anisotropic plates
containing a polygon-like hole, which was derived using the modified Stroh’s complex variable formalism
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(Lu and Mahrenholtz, 1994). While the latter solution should cover the results presented by the former
solution, no verification and comparison have been provided. Due to the complexity and non-verification
of the solutions provided by Lu and Mahrenholtz (1994) (actually the eigen-relation derived in their paper
is incorrect, and hence all their following results are doubtful), it is necessary for us to find a simple, exact
and general solution for this important problem.

Since the boundary conditions for the hole/crack/inclusion problems are not easy to be satisfied by using
the conventional methods of plate bending theory (Szilard, 1985), most of the efforts are devoted in the
complex variable methods (Lekhnitskii, 1968). Unlike the progress of two-dimensional problems, no major
advancement about the complex variable methods in plate bending theory has been developed during these
few decades. Recently, owing to the efforts of several researchers, the complex variable methods in an-
isotropic elasticity have reached a big step by connecting Lekhnitskii formulation and Stroh formalism
(Suo, 1990; Hwu, 1996; Barnett and Kirchner, 1997; Ting, 1999; Yin, 2000a,b). However, still very few
contributions have been made to the plate bending problems. Through our experience in two-dimensional
anisotropic elasticity, recently we develop a Stroh-like formalism for the bending theory of anisotropic
plates (Hwu, 2002a). In our formalism, the deflections, the moments and the transverse shear forces can all
be expressed in complex matrix form. Moreover, by careful re-organization, a Stroh-like compact and
elegant solution form has been formulated. Through this re-organization, most of the relations for the
bending problems look very like the Stroh formalism for two-dimensional linear anisotropic elasticity.
Hence, almost all the mathematical techniques developed for two-dimensional problems can lend to the
plate bending problems. Borrowing from this analogy, simple analytical solutions for anisotropic plates
with holes/cracks/inclusions subjected to out-of-plane bending moments are now obtained explicitly.
Moreover, the stresses (or resultant bending moments) around the hole/crack/inclusion boundaries are also
given explicitly in this paper.

2. Stroh-like formalism for the bending theory of anisotropic plates

In the bending theory of anisotropic plates, the governing equation (combining the Kirchoff plate as-
sumptions, the equilibrium equations, the constitutive laws and the kinematic relations) can be expressed in
terms of the mid-plane lateral deflection w as (Vinson and Sierakowski, 1986)
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where x—y—z is the commonly used Cartesian coordinate system, ¢ is the lateral load distribution, and Dj; is
the bending stiffness of the plate. The deflection w can be determined by solving this partial differential
equation with the satisfaction of the boundary conditions for the considered problems. After finding the
deflection, all the other physical values such as the in-plane displacements (u,v), bending moments
(M., M,, M,,), transverse shear forces (O, 0,), and internal stresses (a,, g, T,,) can all be obtained through
the use of their relations with the deflection.

Although it seems not difficult to get a general solution for the deflection to satisfy the governing
equation (1), it is really not easy to find a solution satisfying the boundary conditions for the complicated
geometrical boundaries by using the conventional methods introduced in most of the textbooks of plates
such as (Szilard, 1985). In order to solve the problems with hole/crack/inclusion boundaries, a Stroh-like
complex variable formalism for the bending theory of anisotropic plates (Hwu, 2002a) will be used in this
paper. In this formalism, the general solutions satisfying the governing equation (1) can be expressed as
follows

w=wy+ 2RC{01W1 (Zl) + Csz(Zz)}, (2)
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where Re stands for the real part of a complex number; wy is a particular solution of Eq. (1), whose form
depends on the load distribution ¢ on a plate surface; w(z;) and w,(z;) are arbitrary analytic functions of
complex variables

Zr=x+ Wy, k=172, (3)

where u,, k = 1,2, are the material eigenvalues which have been assumed to be distinct in the general
expression (2). The determination of the material eigenvalues and their associated eigenvectors will be
described later. The coefficients ¢; and ¢, will be defined after introducing the material eigenvectors.

By introducing the stress function vector ¢ and the slope vector a as

_ e\ _ [ My _Jul_ )
¢_{¢2 T - Mdy [” TV [T ow ([ )
Ox
and using the general solution (2), a Stroh-like formalism has been developed as (Hwu, 2002a)
b = ¢, + 2Re{AW (2)}, a = ag + 2Re{BW(2)}, (3)

where ¢, and oy are the particular solutions related to the lateral load distribution ¢; w'(z) is a function
vector defined as

Y= (e ©

in which the prime (') denotes differentiation with respect to its argument z;. x,, and A, B are the material
eigenvalues and eigenvector matrices, which can be determined from the following eigen-relation:

N¢E = ué, (7a)
where
o N1 N2 . a
N—[N3 Nﬂ’ 5—{1)}’ (7b)
and
N, =-T'R", N,=T'=N], N;=RT'R"-Q=NI. (7¢)
In the above eigen-relation, the three 2 x 2 real matrices Q, R and T are defined as
D; ! D; ! D; D7 ! D; ! D
2 — 5l — 5l 12 1P —7ls
Q: 1 . 12* , R= 12* 1 e T= 41 i 2 ) (8)
—5D% ;D6 1P —3Di —5D Dy
in which Dj; is the components of the inverse bending stiffness matrix Dy, i.e.,
Dy Dy Di]
Dy, Dy Dy | =D . )

* * *
Dl() D26 D66

It has been proved that the material eigenvalues p, cannot be real due to the positive definiteness of
strain energy and they will appear in two pairs of complex conjugates (Lekhnitskii, 1968). If the eigenvalues
are assumed to be distinct and are arranged in the order that u, and u, are those with positive imaginary
parts, their associated eigenvectors will be independent of each other and the eigenvector matrices A and B
are defined as
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A:[al 32], B:[bl bz] (10)

For the convenience of readers’ reference, the explicit expressions of the fundamental matrix N and the
eigenvectors a; and b; obtained in Hwu (2002a) are listed below

— 4D3 2D,D
;Dze 1 4Dgs — > 26 —2Dy + 11)2 26 -1 .
Ni=| p2 ;o No= 2D22D D? 2 1, Ns=|D, ) (11)
~n2 0 —2Dy + 121726 Dy — ad?) 0 0
Dy ¢ Dy, ' Dy
and
ak:Ck{zi}a bkzck{_iuk}? (12a)
where
D
hy = Dy + Dyppie + 2Dogpty, &k = 'u—“ + Diapy, + 2Dj, (12b)
k
ci:;, k=1,2. (12¢)
2(gk — wehy)

3. Moments and transverse shear forces

In practical applications, one is usually interested in the moments and shear forces around the hole
boundary since most of the critical stress occurs along the hole boundary. To find the moments and
transverse shear forces around the hole boundary, the conventional way is to calculate the moments
(M., M,,M,,) and transverse shear forces (Q,,Q,) or effective transverse shear forces (V;, ¥,) by using their
relations with the deflection w, then use the transformation law to find their values in the normal and
tangent coordinate system, i.e. M,, M,, M,,, O,,Q,, V,, V;. Since in our newly developed Stroh-like for-
malism, the final results are expressed in terms of the stress function vector ¢ and slope vector a, it is hoped
that the moments and the transverse shear forces can be found directly from ¢ instead of using the con-
ventional way. To achieve this goal, let us consider the equilibrium equation with ¢ = 0, i.e.,

aQX + % aM)C aM‘(y

x Ty " T Ty

oM, oM,

0,=0, @x’ E - Qy =0. (13)

The first equation of (13) will be satisfied automatically if we let

_ O _On
Qx - ay; Qy - ax . (14)
From the definition of the stress function vector ¢ given in (4, part 1), we know
0, 0,
M, =——2, M, =——"1, 15
ay Y ax ( )

Substituting (14) and (15) into (13, parts 2 and 3), we obtain

0, 09,
My, =—2—n=—"+n. 16
=7, ay” (16)
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The second equality of (16) will then lead to
_1/0¢, 09,
=3 < ox  dy ) (17)

Like the surface traction for two-dimensional problems, we may now define the surface moments along
the hole boundary, M; and M>, as

M, = M, cos 0+ M,,sin0, M, = M., cos 0+ M,sin 0, (18a)
and the surface moments along the surface perpendicular to the hole boundary, M} and M;, as
M; = —M,sin 0 + M, cos 0, M; = —M,, sin0 + M, cos 0, (18b)
in which
dy Ox . ox Oy
= = X = — = = - == 1
cos 0 = n % sin 0 = n, % 3’ (18¢)

where 0 denotes the angle between the normal n- and x-axis (see Fig. 1). Substituting (15) and (16) into
(18a)—(18c) and using chain rule for differentiation, the surface moment M; and M, i = 1,2 can then be
expressed as

_ 0,  x _ 09, Oy
Ml——§+ a, Mz—g‘#i’[a, (193)

* a¢2 Ox * __ ad)l ay
M=o " T T o (196)

The values in the n—¢ coordinate can be calculated from the values in the x—y coordinate according to the
following transformation laws:

M, = M, cos 0 + M, sin 0 = cos® O M, + sin’ OM, + 2sin 0 cos 0M,,,
M, = —M; sin 0 + M, cos 0 = M| cos 0 + M; sin 0 = sin 0 cos O(M,, — M,) + (cos? 0 — sin’ 0)M,,,

M, = —M; sin 0 + Mj cos 0 = sin> 0 M, + cos” OM, — 2sin 0 cos 0 M,,, (20)

Fig. 1. Plate geometry.
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0, = cos 00, + sin 00,
O, = —sin 00, + cos 00,
Substituting (19a) and (19b) into (20) and using (18c), the moments M,, M,,, M, can be written as
6¢1 ¢

M, = sin — —2 cos 0,
M, = 6(151 sO+—= ¢2 s1n9+17——£sm0+ d)zcos@ 1, (21)
A
0
M, = ;}511 s@—% sin 0,
or in matrix notation
A/[n = _ST(I),Sa
Mnt = nT(I),s + n= ST¢,n -n (223')
= _an)Jﬂ
where the comma denotes differentiation and
s' =[—sinf cosf], n'=[cosO sin]. (22b)
From (22a, part 2), we obtain
1
n=5(s'e,—n'e,), (23)
so that the moment M,, can also be expressed as
M, = *( Td) + an) ) (24)

Substituting (14) into (20, parts 4 and 5) and using (18c) and the chain rule for differentiation, the
transverse shear forces O, and O, can now be expressed as

0, = N O = N o (25)
Substituting (23) into (25), we have
1
Qﬂ = - E (STd),ns - an),s.r)? Ql - ( Td) an nT(I) wz) (26)
With the results of (24) and (26), the effective transverse shear forces ¥, and ¥; can be found to be
aM,, @Mn
Qn t T(b,sS? V Qf : ST(b,rm' (27)

In summary, from (22a), (22b), (24), (26) and (27), we see that all of the moments and transverse shear
forces and effective transverse shear forces in the normal-tangent coordinate have simple relations with the
stress function vector ¢.

4. Some identities

In Stroh formalism for two-dimensional problems, there are many identities converting certain com-
binations of eigenvalues and eigenvectors which are complex values to real quantities directly obtainable
from the elastic constants. By using these identities, many complex form solutions can be converted to real
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form solutions. Since all the physical quantities are real, the real form solutions are more suitable for the
engineering application. To achieve this goal, some identities which are useful for the present paper will be
derived in this section.

For two-dimensional problems, most of the identities are derived from the eigen-relation like (7a)—(7c)
for the plate bending problems. Following the approach for the two-dimensional problems (Ting, 1996), we
re-organize the eigen-relation (7a)—(7c) as

A A
RN (28)
where (p,) denotes a diagonal matrix whose diagonal components are y,, k = 1,2. Postmultiplying both
sides of (28) by [A"'B™!], we obtain

I AB'| [A()A' A(y)B!
Maac T [BA sl >

where AB™! and BA™! can be expressed in terms of three fundamental real matrices, S, H and L as

AB™' = AB"(BB")"' = —(S+il)L ",

30

BA™' = BAT(AAT) ' = (ST +iDH !, G0)
where S, H and L are defined as

S =i(2AB" —1), H=2iAA", L= -2iBB". (31)

These three fundamental matrices can be proved to be real through the orthogonality relation between
the eigenvectors A and B (Hwu, 2002a). Substituting (30) into (29) and using the expression given in (7b) for
N, we obtain the following identities

Al )A =N, + N,STH! +iN;H !,
Al )B™' =N, —N;SL™' —iN, L™, (32)
B(y)B™' =N| = N;SL™' —iN;L™".

From the above derivation, we see that the identities (32) are associated with the eigen-relation (7a)—(7c).

Therefore, if the eigen-relation is generalized, generalized identities of (32) can also be obtained auto-

matically. Like the generalized eigen-relation for the two-dimensional problems (Ting, 1996), the eigen-
relation (7a)—(7¢) can be generalized as

N(0)¢ = u(0)¢, (33a)
where
Ni(0) N»(0)
N(H) = [NS(Q) N"ll"(g)}a = {:l)}a (33b)
and
Ni(0) = =T (O)RT(0), N(0) =T '(0) =N;(0), Ns(0) =R(O)T '(OR"(0) — Q(6) = N5 (0).
(33¢)

In (33¢), Q(0), R(0) and T(0) are related to the matrices Q, R and T defined in (8) by
Q(0) = Qcos? 0+ (R + RT)sin O cos O + Tsin” 6,
R(0) = Rcos? 0 4 (T — Q) sin 0 cos 0 — R" sin” 0, (34)
T(#) = Tcos’ 0 — (R + R")sin 0 cos 0 + Q sin” 6.
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Same as the two-dimensional problems (Ting, 1996), the eigenvalue u(0) of (33a) is related to the ei-
genvalue p of (7a) by
—sin 0+ pcos 0
p(0) = LT THET
cos @+ psind

Using (33a)-(33c) and following the same procedures for the derivation of the identities (32), we can
obtain the generalized identities of (32) as

(35)

Al (0))A™ = E(0) +iF,(0), (36a)

A, (0))B™" = Ey(0) +iF,(0), (36b)

B(11,(0))B~" = E3(0) + iF;(0), (36¢)
where

E (0) =N;(0) + N, (0)STH™',  F,(0) = N,(O)H™',

E,(0) = Ny(0) = Ny (0)SL™',  F,(0) = —N;(O)L, (37)

E;(0) = N{(0) —N;(0)SL™',  F5(0) = —Ns(O)L™".

Since N;(0) = N; and u(0) = u, the identities (32) are just special cases of identities (36a)-(36c).

When the identities (32) and (36a)—(36¢) are applied, the solutions containing the complex matrices A, B
and (1, (6)) may then be expressed in terms of the real matrices N;(6), S, H and L. From the definitions of
N;(0) and S, H and L given in (33c) and (31), we know that they are related to the bending stiffnesses Dj;. By
referring to the procedures of finding N;, S, H and L for the two-dimensional problems (Ting, 1996), we
have found the explicit expressions of N;(0), S, H and L for the plate bending problems (Hsieh and Hwu,
2002a), which would be helpful for the present problems.

5. Elliptical holes

Consider an unbounded anisotropic plate weakened by an elliptical hole subjected to out-of-plane
bending moments M, = M., M, = M,, and M,, = 0 at infinity (Fig. 2). There is no load around the edge of
the elliptical hole. The contour of the elliptical hole is represented by

x=acosy, y=bhbsiny, (38)
where 2a, 2b are the major and minor axes of the ellipse and i/ is a real parameter. The boundary conditions
of this problem can be expressed as

M,=M, M,=M, My,=0 atinfinity, (39a)

M, =7V,=0 along the hole boundary. (39b)

Since the boundary considered in this problem is an elliptical boundary, it is not easy to find a solution
satisfying (39b) due to the complexity of describing the normal direction n. The substitutes of the boundary
conditions, which are suitable for the Stroh-like formalism, have been discussed in Hwu (2002a). From the
discussions of Hwu (2002a), we know that the boundary condition (39a) and (39b) can be expressed in
terms of the stress function as

¢ = —M,yi, — M,xi; at infinity, (40a)



M. C. Hsieh, C. Hwu | International Journal of Solids and Structures 39 (2002) 4905-4925 4913

Fig. 2. An anisotropic plate weakened by an elliptical hole subjected to out-of-plane bending moments M, and A7[),.

¢ =0 along the hole boundary, (40b)

where

ilz{(l)}, izz{?}. (40¢)

Since there is no lateral load applied on the plate, i.e., ¢ = 0, the particular solutions ¢, and a of (5)
are set to zero. In order to satisfy the boundary condition at infinity, we add the stress function vector ¢™
and the slope vector a™ to the general solution (5). Thus, the solution to this problem can be expressed
as

¢ = ¢~ + 2Re{AW(2)}, (41a)
o = a™ + 2Re{BwW(2)}, (41b)
where
O™ = —Myiy — Myxiy, o™ = M, (dyy — dix) + M, (dsy — dsx), (42a)
and
) Dt —D: /2} { D: }
d, = /=4 g, = 2 b 4= 26/= L g, = 2 L 42b
! { D;, } : {—Dm/z} : { D}, S R (426)

In Eqgs. (42a) and (42b), ¢ is selected to match the boundary condition at infinity; &> can be obtained
by integrating the following constitutive relation

F*w
W * k *
aixw Dy, Dy, Dig M,
a2 (T | Pr Dn Dyl Moo, (43)
Lo Lo Dy D] (M
Ox Jy

with Mx = an My = My» and Mxy =0.
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In order to satisfy the free edge condition around the hole boundary shown in (40b), by referring to the
solutions of the corresponding two-dimensional problems (Hwu and Yen, 1992; Hwu, 1992) we select

i+ 22—a2—,u,%b2

W/(Z) = <Q;l>k, Sk @ —iuh

: (44)

where k is the unknown coefficient to be determined through the satisfaction of the boundary condition.
Substituting (3) and (38) into (44), we obtain

w'(z) =e ¥k along the hole boundary. (45)

Substituting (45) and (42a, part 1) into (41a) with x and y given by (38), the free edge boundary condition
(40b) now leads to

1 o~ ~
k=5A" (ibMde + atyin). (46)
Substituting (46) into (44), we obtain
1 ~ ~
W(z) = (A (ibeiz + aMyi1> . (47a)

With the use of (12a, part 1), (10) and (40c), Eq. (47a) can be further expressed as
—aM,g, + ibM,h,

1 C/“
wW(z) = — P 2 , 47b
() =24 ab,g, — ibM,h, (470)
€28

where d = hyg) — h g, and ¢, hy, g, k = 1,2 are defined in (12a)—(12c¢).
By combining (41a), (41b) and (47a), the explicit solution of the present problem can be expressed as

¢ = ¢ + Re{A(, YA (ablyis + b ) }, N
o =a* + Re{B<g,;1>A*1 (aﬂyi, + ibﬂxiz) } )

where ¢ and a™ are given in (42a) and (42b). With the explicit solution found in (48), all the physical
responses such as the deflection, bending moments and transverse shear forces of the plate can be obtained
by using their relations with the slope vector and stress function vectors defined in (4), or using the results of
(47a) and (47b) together with the expression (2) for the deflection then applying the relations between
bending moments/transverse shear forces and deflections (Vinson and Sierakowski, 1986).

Although the solution obtained in (48) is quite simple, no explicit closed form solution has been found in
the literature for the general case discussed in this example. Only the solution to the special case of an
orthotropic plate weaken by a circular hole was presented (Lekhnitskii, 1968). The comparison with this
special case will be shown later. In addition, in Section 7 we will also reduce our solution to the interesting
case of cracks just by letting the minor axis of the ellipse to zero.

5.1. Moments around the hole boundary

According to the relations obtained in Section 3, we know that to obtain the explicit solutions for the
moments around the elliptical hole boundary, the first step we need to do is calculating ¢ and ¢ ,. Dif-
ferentiation with respect to s and n can be achieved by using the chain rule,
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Of 9/ 05,00 (et Qudy
Os 0g, Oy 0z \ Ox 0s Oy 0s )’
(49)
Of O 05,00 (0n x t oy
on  0g, O dz \ Ox On Oy om )’
where ¢, = eV, 3¢, /0y =ie"”, 0z /0y = —p(sin O — y, cosh), Oz /ox =1, 0z /dy = w,, Ox/ds = —sin6,
0y/0s = cos 0, 0x/On = cos ), 0y/0n = sin O along the hole boundary, and p is defined as

p= \/gz sin® Y + b2 cos? ), (50a)

where the angle 0 is related to the parameter y by
pcosf =bcosy, psinf=asiny. (50b)
By using (49), we obtain

og;! iy 1 . i

2 _—;e = — Es1n0+gcos0 , (Sla)
@gk_l i iy T\ 1 . 1 L

E_;e ,uk(0—§> = Es1n0+z cos 0 ﬂk(()_f)’ (51b)

along the hole boundary.
By using the results of differentiation obtained in (51a) and (51b) and the identities proved in (36a)—(36¢),
the differentiation of the stress function vector ¢ with respect to s and n can be obtained as

¢, =0, (52a)
b, = —J\Alx{ cos OE, (0 - g) + sin@[l—ngl (0 - g)] }iz
+1\7[y{sin9E1(9—g) cose{H%Fl(e—g)Hil, (52b)

where E;(0) and F,(6) and are defined in (37), which are matrices composed of the fundamental real
matrices N;(0), S, H and L whose explicit expressions have been found in (Hsieh and Hwu, 2002a).

With the results of (52a) and (52b), the moments around the hole boundary can then be calculated easily
from (22a), (22b) and (24).

5.2. Circular holes

For an anisotropic plate weakened by a circular hole with radius « subjected to M, = M M, =M, =0,
the explicit solution (48) can be reduced to

¢ = ™ — aMIm{A(c; YA " }i, (53a)

o = o™ — aMIm{B(c; ')A }i,, (53b)
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and (47b) becomes

iaMh,
1)
W(z) = — e L 53¢
() =34 —iaMh, (53¢)
26y

If the plate is composed of orthotropic materials with thickness /4, the bending stiffness D;; will be

Ell’l3 E2h3 Gh3
————, Dn=—F+————, Dp=viDyp=vD Dig =Dy =0, Des=—=
12(1 — vyvy)’ 22 12(1 = viw)’ 12 = Vidpn = Valiy, 16 26 ) 66 1

(54a)

where E| and E, are the Young’s moduli in x; and x, directions, respectively; G is the shear modulus in the
x1x; plane; v; and v, are the major and minor Poisson’s ratios, respectively, and satisfy

Dy =

Vi V2
R 54b
E B (54b)
With the use of (54a), (54b) and (12b), w/(z) given in (53c) can now be written explicitly as
1 i(n + 1) Ma
, 26’1 Dll(ﬂz—ﬂl)[%ﬂ‘lﬂ‘vl\h"‘k\)z] Cl
W) = N o (5a)
L _1(V1 + ,u]) @
2¢; D“(,uz—,ul)[%—i—l—i-vlvz—l—kvz] &
where
D .
k=—pp, = D_lla n=—i(u + ). (55b)
2

With the results of (55a) and (55b), the deflection w can easily be obtained from (2) by simple integration,
which can be proved to be identical to that shown in Lekhnitskii (1968).

6. Elliptical inclusions

Consider an unbounded anisotropic plate embedded with a rigid elliptical inclusion subjected to out-of-
plane bending moments M, = MX, M, = M}, and M,, = 0 at infinity. In this case we are dealing with a
second fundamental problem of elast101ty due to the fact that the deformation is specified at the contour of
the inclusion. Since the rigid inclusion cannot undergo deformation, the boundary conditions of this
problem can be expressed as

M,=M, M,=M, M,=0 atinfinity, (56a)
ow
W= = =0 along the inclusion boundary. (56b)

From the discussions of Hwu (2002a), we know that the boundary condition (56a) and (56b) can also be
expressed in terms of the stress function vector ¢ and slope vector o as

¢ = —M,yi, — M,xi; at infinity, (57a)
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o =0 along the inclusion boundary. (57b)

By referring to the corresponding two-dimensional problems (Hwu and Ting, 1989; Hwu and Yen, 1993)
and using the approach similar to the previous section, we obtain the explicit solution for the inclusion
problems as

Ww(z) = % ("B [a (del v Myd3) —ib (dez + A7[yd4)] : (58a)
¢ = ¢~ +RefA(R B [a(rds + #,d ) — (W1 + 1,4 ) |}, (58b)
o =a* + Re{B<¢;‘>B*1 [a (del + Myd3) —ib (dez + Myd4)} } (58¢)

where ¢ and a™ are given in (42a) and (42b).

Note that from the boundary conditions shown in (56b) or (57b), it seems that the rigid body motion of
the rigid inclusion has been suppressed. Actually, the rigid inclusion is allowed to move in space and rotate.
The rigid body translation and the rotation about the z-axis will lead to e = 0, while the rigid body rotation
about the x-axis and y-axis will lead to & = constant. From the Stroh-like formalism (5) and the relations
for the moments and transverse shear forces given in (22a)—(27), we know that constant term of & will not
have contribution to the internal stresses of the plates and hence can be neglected in our calculation.

6.1. Moments around the inclusion boundary

Similar to Section 5, the vectors of ¢ and ¢, around the inclusion boundary can be obtained as

$,. = ]\Alx cos i, + ]\A4y sin 0i; + (sin OSL™! — % cos HL”) (]ljlxdl + A7[yd3)

N -

+ <CosHSL1 +§ sineL—1> (de2 +Myd4), (59a)
b, = —MX sin 01, — My cos 0i; + {sin 0E, (0 — g) —g cos 0F, ((9 — g)} (1\7[xd1 + A7[yd3>

T b . 7r ~ ~
+ [Cos 0E, (0 - 5) += sinOF; (0 - 5)} (deZ + Myd4), (59b)
where E,(0) and F,(0) are defined in (37). With the results of (59a) and (59b), the moments around the
inclusion boundary can then be calculated from (22a), (22b) and (24).

6.2. Circular inclusions

For an anisotropic plate embedded with a rigid circular inclusion with radius a subjected to M, = M R
M, = M,, =0, the explicit solution (58a)—(58c) can be reduced to

W(z) = %aﬂ(gk‘l)B_l(dl —idy), (60a)

¢ = ¢~ +aMRe{A()B'(d, —idy)}, (60b)

o =a> +aMRe{B(c;")B~'(d; —id,)}. (60c)
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If the plate is orthotropic, then

Dy, . Dy, .

_ D D — Dy 1
DDy — D3’ 2 DDy —D3,)’ 2 DDy — D3’

DTé :Dzé =0, Dgé :F%’

(61)

*
Dll

where Dj; are given in (54a). Substituting (10), (12a)—(12c), (42b), (54a), (54b) and (61) into (60a), w'(z) can
then be reduced to

Hy + vy @
W(z) = 2e1(py — /12)911(1 - Vle)/\Ql , (62)
Wy +1v; Ma

2e(pt; — pa)Di(1 = vivy) ¢y

which is exactly the same as that shown in Lekhnitskii (1968).

7. Moment intensity factors for crack problems

An elliptic opening can be made into a crack of length 2a by letting the minor axis b be zero. The explicit
solution given in (48) is then applicable to crack problem with 5 = 0. Consider a cracked plate subjected to
bending moment M, = A7[y at infinity. The stress function vector ¢ and the slope vector a of this problem
may therefore be obtained from (48) with b = A7[x =0, ie.,

d = ™ +aM,Re{A{;HA " Vi, (63a)
o= o™ +aM,Re{B(c;")A ™" }iy, (63b)
where

. ~ ~ 1
O = —Myxi;, o =M,(dyy —dsx), ¢ = 5 (zk + \/z,% — a2>. (63c¢)

For the crack problem, it is interesting to know the moment intensity factors which is usually defined as

k= { 8] = S umvan{ 01, 8

where r is the distance ahead of the crack tip. Thus, to find the moment intensity factors, we need to
calculate M,, M,, ahead of the crack tip. To calculate the moments ahead of the crack tip, we may use the
relations given in (15, part 2) and (16), and let x = a + r, y = 0. The differentiation with respect to x and y
can be performed by using chain rule, i.e.,

0g! 0g ' Og Oz 1 Z oc! Ogr! Og, 2y 4
=k Sl ppmm———} Sl p——— (65)
Z Z

Gxiagka_zkaxia 2> —a? ayiagka—zkayia > —a?

Using the results of (65) and considering the near tip range y = 0, x = a + r, where r — 0, and with the help
of the identity (32, part 1), the differentiation of the stress function vector ¢ in (63a) with respect to x and y,
may lead to
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a -~ . a -~ .
¢,x = _\/;Mylh (I)’y - _\/;MyElll. (66)

With (66), the moments M, and M,, near the crack tip may then be obtained from (15, part 2) and (16).
Substituting their near tip values into the definition (64), we obtain the moment intensity factor as

6 ~
K = 0 VmaM,, (67a)
3 ~
K[] = —ﬁ\/ naMy(El)”. (67b)

From (67a) and (67b), we see that the moment intensity factor Kj; not only depends on its geometry but also
depends on its material properties, and Ky, Ky increase as the crack length 2« increases or plate thickness /
decreases.

If the plate is made of orthotropic materials, Nj, N,, S, H have the following structures, which can be
seen from (11) and (Hsieh and Hwu, 2002a),

S i A A S

Plugging this information into the definition of E; given in (37), it can easily be proved that
(Ey),; =0, for orthotropic plates. (69)

Thus, mode II moment intensity factor equals to zero for cracks in orthotropic plates subjected to
bending moments M, at infinity.

8. Numerical examples

To show that the explicit solutions obtained in (52a) and (52b) for the moments around the hole
boundary, and (59a) and (59b) for the moments around the inclusion boundary are exact, several examples
are illustrated in this section. All the examples shown in this section consider an unbounded carbon-epoxy
plate (T300/N5208) containing a hole or a rigid inclusion. The plate thickness is # = 3 mm, and the material
properties of the carbon-epoxy are

E, =181 GPa, E, =103 GPa, G=7.17 GPa, v, =0.28.
The bending stiffnesses calculated by using the materials properties and the plate thickness are

D11 = 40908, Dzz = 23287 D12 = 652, D16 = D26 = 07 D66 =16.13. (GPammg)
With the eigen-relation (7a)—(7c), the material eigenvalues are obtained as
w; = 11239 + 1.71141, p, = —1.1239 + 1.7114i.

Substituting these data into (11), (31), (33a), (33b) and (33c¢), the matrices N;, N;(0), S, H and L can easily
be obtained. Note that instead of calculating S, H and L through the eigenvector matrices, their explicit
expressions in terms of bending stiffness can be found in Hsieh and Hwu (2002a).
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Table 1
Moments around the circular hole of an orthotropic carbon-epoxy plate subjected to out-of-plane bending moments M, = M,
A/[y = M\'}" =0

Angle () Moments
M,/ M M,/M
Present Lekhnitskii (1968) Present Lekhnitskii (1968)
0° 0 0 0.1370 0.1369
15° —-0.0316 —-0.0316 0.1508 0.1507
30° —-0.0871 —-0.0871 0.2112 0.2112
45° —0.2145 —0.2146 0.4170 0.4170
60° —-0.4877 —-0.4876 1.1192 1.1193
75° -0.5914 —-0.5913 2.5062 2.5062
90° 0 0 3.0568 3.0566

Due to symmetry, only a quarter of the circular hole is presented.

Table 2
Moments around the circular inclusion of an orthotropic carbon-epoxy plate subjected to out-of-plane bending moments M, = M,
Mv = Mxy =0

Angle (V) Moments

M,/ M M,/M M,/M

Present Lekhnitskii (1968) Present Present
0° 1.8918 1.8918 0 0.0302
15° 1.7443 1.7443 —0.4185 0.1386
30° 1.3412 1.3412 —0.6645 0.3981
45° 0.7907 0.7907 —0.5982 0.5906
60° 0.2401 0.2401 —-0.2036 0.3297
75° -0.1629 —-0.1629 0.0593 —-0.1735
90° —-0.3104 —-0.3104 0 —0.0869

Due to symmetry, only a quarter of the circular inclusion is presented.

8.1. Example 1: A circular hole or rigid inclusion in an orthotropic plate

The purpose of this example is to verify our results by using the existing solutions obtained in Lekh-
nitskii (1968) for the present special conditions. Although the deflection functions for these special cases
shown in (55a), (55b) and (62) have been verified analytically, their associated moments distributions such
as those shown in (52a), (52b), (59a) and (59b) have not been checked. By using the numerical data shown
above for the orthotropic plate, and employing (52a), (52b), (59a), (59b), (22a), (22b) and (24), the moments
around the circular hole/inclusion boundary are presented in Tables 1 and 2, which show that our solutions
are almost the same as those obtained in Lekhnitskii (1968). Note that in Table 2, only M, is checked
because no formulae for M, and M,, were provided in (Lekhnitskii, 1968) due to their complexity.

8.2. Example 2: A circular hole or rigid inclusion in an anisotropic plate

After verifying our solutions by using the existing solutions for the special cases, in order to show the
generality of our solutions we now consider the anisotropic plates. The anisotropy of the plate is made by
orienting the fiber direction of carbon-epoxy counterclockwise from x-axis to 30° or 60°. Figs. 3 and 4 show
the moment distributions around the circular hole/inclusion boundary for four different fiber orientations,
0°, 30°, 60° and 90°. One interesting result shown in Fig. 3 is that the maximum value of M, always occurs at
the location perpendicular to the fiber direction when the applied moment M, remains parallel to the x-axis.
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() fiber orientation, 60°. }—{ (d) fiber orientation, 90°.

Fig. 3. Moments around the circular hole in an anisotropic plate, fiber orientation: (a) 0°, (b) 30°, (c) 60° and (d) 90°.

Moreover, the maximum value of M, decreases when the fiber orientation increases. Similar situation does
not occur in M, of circular holes and all the moment components of circular inclusions.

8.3. Example 3: An elliptical hole or rigid inclusion in an anisotropic plate

Example 2 shows the effects of material properties on the moment distributions around the hole/in-
clusion boundary. Because our solutions obtained in this paper are also valid for the general elliptical
shape, it is interesting to know the effects of hole/inclusion shapes by just changing the ratio of minor axis to
major axis. Consider the anisotropic plates with fiber oriented counterclockwise 30° from x-axis. Figs. 5
and 6 show moment M, around hole/inclusion boundary versus angle i for five different ratios, b/a = 5, 2,
1, 1/2, 1/5. From Fig. 5 we see that for hole problems, the maximum value of M, increases when the ratio
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(a) fiber orientation, 0°.
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(d) fiber orientation, 90°. \

Fig. 4. Moments around the circular rigid inclusion in an anisotropic plate, fiber orientation: (a) 0°, (b) 30°, (c) 60° and (d) 90°.

(c) fiber orientation, 60°.

b/a increases. Moreover, the location of the maximum value of M, will also move away from the location
perpendicular to the fiber direction if the ratio is away from unity (a circle). Note that for higher ratio such
as b/a = 5 the elliptic hole may approach to a crack perpendicular to the applied moments M,. Therefore,
the maximum value of M, may approach to infinity if the ratio approaches to infinity. On the other hand, if
the ratio b/a approaches to zero, the elliptical hole may approach to a crack parallel to the applied moment.
According to the moment intensity factors obtained in (67a) and (67b), we know M, will not influence the
intensity of the near tip stresses, which may also explain why the maximum value of M, decreases when the
ratio b/a decreases.

The results presented in Fig. 6 for the inclusion problems show that the narrower the inclusion the higher
the maximum value of M, no matter the inclusion is perpendicular or parallel to the applied moment. The
location of the maximum value of M, will approach to 90° (or 270°) when b/a increases, and approach to 0°
(or 180° or 360°) when b/a decreases, which is reasonable.
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Fig. 5. Moments around the elliptical hole in an anisotropic plate (fiber orientation, 30°; M, = M, M, =M, =0).

In Fig. 5, we shows the plot of M, instead of M,, because the location of M,, does not have the rules like
M,, but the maximum value of M,, will also approach to infinity if the ratio »/a approaches to infinity.

9. Conclusions

The explicit closed form solutions for an anisotropic plate containing an elliptical hole or rigid inclusion
subjected to out-of-plane bending moments are obtained by applying the Stroh-like formalism for plate
bending problems. The solutions for the crack problems are obtained by letting the minor axis of the ellipse
approach to zero and the moment intensity factors of the cracks are also obtained. To verify their cor-
rectness and to show their generality, several examples are presented. Because the analytical solutions
existing in the literature are valid only for the orthotropic plates containing a circular hole or a rigid in-
clusion, the comparison can only be made for this special case. The results show that our solutions are
identical to those obtained in the literature for this special case. Beyond this special case, our solutions also
cover general anisotropic materials with elliptical holes or inclusions or cracks, which have not been found
in the literature.

One should note that the Stroh-like formalism introduced in this paper considers only the plate bending
problems. Therefore, if one considers the general laminated composites, this formalism may not be ap-
plicable due to the possible coupling between bending and in-plane deformation. Only when the laminates
are symmetric with respect to the mid-plane, the bending and in-plane deformations are decoupled and the
present results can be utilized. If one is interested in the coupled stretching—bending analysis for the general
non-symmetric laminates, please refer to one of the author’s recent paper (Hwu, 2002b) and our upcoming
paper (Hsieh and Hwu, 2002b) for the coupled stretching—bending analysis for holes in laminates.
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Fig. 6. Moments around the elliptical rigid inclusion in an anisotropic plate (fiber orientation, 30°%; M, = M, M, =M, =0).

One other restriction mentioned in this paper is that the material eigenvalues should be distinct. If the
material eigenvalues are repeated, such as the very common cases of isotropic plates, the solutions pre-
sented in this paper should be modified. This modification has been discussed vastly in the two-dimensional
problems. Due to the similarity between the Stroh-like formalism and the Stroh formalism, same techniques
developed in two-dimensional problems can be transferred to the present problems directly without any
difficulties. If one only wants to use the present formulae to calculate the related numerical values, no
modification is required because all the problems caused by the repeated eigenvalues can be avoided just by
introducing a small perturbation in the values of the material eigenvalues or the material properties.
Moreover, if the solutions do not contain the material eigenvector matrices A and B, the problems of
repeated eigenvalues will not cause any trouble to the solutions. In other words, the solutions are valid for
the cases of repeated eigenvalues. For example, in this paper the moments around the hole/inclusion
boundaries and the moment intensity factors are not expressed in terms of A and B but are expressed in
terms of the fundamental matrices N;(6), S, H and L whose explicit expressions have been found in Hsieh
and Hwu (2002a).
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